Hyperliquid End-to-End
Build a model on CrowdCent's training data and submit¶
In [ ]:
Copied!
!pip install crowdcent-challenge
import crowdcent_challenge as cc
import polars as pl
from xgboost import XGBRegressor
!pip install crowdcent-challenge
import crowdcent_challenge as cc
import polars as pl
from xgboost import XGBRegressor
For this tutorial, you will need:
- CrowdCent account: register for free
- CrowdCent API Key: generate an API key from your user profile
Load API key¶
In [1]:
Copied!
CROWDCENT_API_KEY = "API_KEY_HERE"
CROWDCENT_API_KEY = "API_KEY_HERE"
Initialize the client¶
In [2]:
Copied!
client = cc.ChallengeClient(
challenge_slug="hyperliquid-ranking",
api_key=CROWDCENT_API_KEY,
)
client = cc.ChallengeClient(
challenge_slug="hyperliquid-ranking",
api_key=CROWDCENT_API_KEY,
)
2025-06-09 16:19:54,459 - INFO - ChallengeClient initialized for 'hyperliquid-ranking' at URL: https://crowdcent.com/api
Get CrowdCent's training data¶
In [3]:
Copied!
client.download_training_dataset(version="latest", dest_path="training_data.parquet")
training_data = pl.read_parquet("training_data.parquet")
training_data.head()
client.download_training_dataset(version="latest", dest_path="training_data.parquet")
training_data = pl.read_parquet("training_data.parquet")
training_data.head()
2025-06-09 16:19:54,715 - INFO - Downloading training data for challenge 'hyperliquid-ranking' v1.0 to training_data.parquet Downloading training_data.parquet: 100%|██████████| 85.1M/85.1M [00:00<00:00, 102MB/s] 2025-06-09 16:19:55,971 - INFO - Successfully downloaded training data to training_data.parquet
Out[3]:
shape: (5, 85)
id | eodhd_id | date | feature_16_lag15 | feature_13_lag15 | feature_14_lag15 | feature_15_lag15 | feature_8_lag15 | feature_5_lag15 | feature_6_lag15 | feature_7_lag15 | feature_12_lag15 | feature_9_lag15 | feature_10_lag15 | feature_11_lag15 | feature_4_lag15 | feature_1_lag15 | feature_2_lag15 | feature_3_lag15 | feature_20_lag15 | feature_17_lag15 | feature_18_lag15 | feature_19_lag15 | feature_16_lag10 | feature_13_lag10 | feature_14_lag10 | feature_15_lag10 | feature_8_lag10 | feature_5_lag10 | feature_6_lag10 | feature_7_lag10 | feature_12_lag10 | feature_9_lag10 | feature_10_lag10 | feature_11_lag10 | feature_4_lag10 | feature_1_lag10 | … | feature_5_lag5 | feature_6_lag5 | feature_7_lag5 | feature_12_lag5 | feature_9_lag5 | feature_10_lag5 | feature_11_lag5 | feature_4_lag5 | feature_1_lag5 | feature_2_lag5 | feature_3_lag5 | feature_20_lag5 | feature_17_lag5 | feature_18_lag5 | feature_19_lag5 | feature_16_lag0 | feature_13_lag0 | feature_14_lag0 | feature_15_lag0 | feature_8_lag0 | feature_5_lag0 | feature_6_lag0 | feature_7_lag0 | feature_12_lag0 | feature_9_lag0 | feature_10_lag0 | feature_11_lag0 | feature_4_lag0 | feature_1_lag0 | feature_2_lag0 | feature_3_lag0 | feature_20_lag0 | feature_17_lag0 | feature_18_lag0 | feature_19_lag0 | target_10d | target_30d |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
str | str | datetime[μs] | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | … | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 |
"BRETT" | "BRETT29743-USD.CC" | 2024-05-06 00:00:00 | 0.55721 | 0.540086 | 0.512754 | 0.508386 | 0.692426 | 0.55288 | 0.549131 | 0.533897 | 0.736748 | 0.617263 | 0.603953 | 0.623957 | 0.450295 | 0.479222 | 0.519303 | 0.528181 | 0.527312 | 0.525878 | 0.497428 | 0.518564 | 0.239416 | 0.398313 | 0.451205 | 0.487323 | 0.118248 | 0.405337 | 0.448927 | 0.492024 | 0.086131 | 0.41144 | 0.485798 | 0.550351 | 0.236496 | 0.343396 | … | 0.177372 | 0.365126 | 0.493638 | 0.351825 | 0.218978 | 0.418121 | 0.546089 | 0.268613 | 0.252555 | 0.365888 | 0.495271 | 0.420438 | 0.551095 | 0.538486 | 0.542948 | 0.233333 | 0.249513 | 0.323913 | 0.447919 | 0.289855 | 0.263176 | 0.334256 | 0.435102 | 0.428986 | 0.390405 | 0.400922 | 0.508626 | 0.272464 | 0.270538 | 0.306967 | 0.431848 | 0.401449 | 0.410944 | 0.507738 | 0.507471 | 0.507246 | 0.985507 |
"BRETT" | "BRETT29743-USD.CC" | 2024-05-07 00:00:00 | 0.456339 | 0.471133 | 0.514562 | 0.508886 | 0.54709 | 0.519471 | 0.515427 | 0.532992 | 0.613331 | 0.547406 | 0.606655 | 0.627392 | 0.563407 | 0.461703 | 0.512452 | 0.548603 | 0.517968 | 0.518984 | 0.491352 | 0.514658 | 0.233577 | 0.344958 | 0.446484 | 0.48631 | 0.116788 | 0.331939 | 0.402621 | 0.492332 | 0.056934 | 0.335133 | 0.450072 | 0.55014 | 0.110949 | 0.337178 | … | 0.175161 | 0.347316 | 0.470913 | 0.351814 | 0.204374 | 0.37589 | 0.527665 | 0.230646 | 0.170798 | 0.31625 | 0.470839 | 0.374209 | 0.602433 | 0.560709 | 0.53946 | 0.272464 | 0.269793 | 0.307375 | 0.428926 | 0.407246 | 0.32039 | 0.326165 | 0.426455 | 0.484058 | 0.417936 | 0.376534 | 0.491264 | 0.365217 | 0.297932 | 0.317555 | 0.420723 | 0.281159 | 0.327684 | 0.500999 | 0.487154 | 0.869565 | 0.985507 |
"BRETT" | "BRETT29743-USD.CC" | 2024-05-08 00:00:00 | 0.566488 | 0.453614 | 0.507711 | 0.529308 | 0.383759 | 0.434102 | 0.471631 | 0.518237 | 0.448497 | 0.491656 | 0.563988 | 0.615796 | 0.37807 | 0.391257 | 0.465007 | 0.524881 | 0.46842 | 0.55421 | 0.480155 | 0.521811 | 0.106569 | 0.336529 | 0.407477 | 0.490267 | 0.287591 | 0.335675 | 0.417691 | 0.514816 | 0.230657 | 0.339577 | 0.45308 | 0.574943 | 0.291971 | 0.33502 | … | 0.262028 | 0.348065 | 0.471507 | 0.332974 | 0.281815 | 0.386736 | 0.525698 | 0.239405 | 0.265688 | 0.328473 | 0.472002 | 0.498498 | 0.616402 | 0.585306 | 0.538537 | 0.365217 | 0.297916 | 0.317222 | 0.417801 | 0.255072 | 0.245769 | 0.290722 | 0.407634 | 0.314493 | 0.323733 | 0.331655 | 0.468477 | 0.171014 | 0.20521 | 0.270115 | 0.396829 | 0.205797 | 0.352147 | 0.476755 | 0.47601 | 0.913043 | 0.985507 |
"BRETT" | "BRETT29743-USD.CC" | 2024-05-09 00:00:00 | 0.382578 | 0.383157 | 0.46101 | 0.505768 | 0.401234 | 0.42504 | 0.441107 | 0.496157 | 0.321855 | 0.413705 | 0.524751 | 0.593716 | 0.40717 | 0.410203 | 0.472939 | 0.505173 | 0.590994 | 0.579914 | 0.497107 | 0.513647 | 0.286131 | 0.334355 | 0.427468 | 0.513196 | 0.268613 | 0.334924 | 0.391343 | 0.490949 | 0.337226 | 0.329541 | 0.440073 | 0.566184 | 0.254015 | 0.330593 | … | 0.261943 | 0.343492 | 0.450375 | 0.403047 | 0.370136 | 0.391921 | 0.52686 | 0.242272 | 0.248143 | 0.329173 | 0.449071 | 0.554988 | 0.581873 | 0.580894 | 0.524828 | 0.171014 | 0.205194 | 0.269774 | 0.393907 | 0.268116 | 0.261695 | 0.298309 | 0.387545 | 0.276812 | 0.339929 | 0.334735 | 0.464148 | 0.321739 | 0.282006 | 0.306299 | 0.392148 | 0.265217 | 0.410103 | 0.50499 | 0.468336 | 0.934783 | 0.992754 |
"BRETT" | "BRETT29743-USD.CC" | 2024-05-10 00:00:00 | 0.407299 | 0.398432 | 0.467491 | 0.485709 | 0.268613 | 0.414399 | 0.446095 | 0.489301 | 0.232117 | 0.413673 | 0.488628 | 0.5732 | 0.240876 | 0.396751 | 0.456653 | 0.506786 | 0.60292 | 0.598595 | 0.535617 | 0.530595 | 0.252555 | 0.329927 | 0.390503 | 0.489134 | 0.235036 | 0.251825 | 0.366699 | 0.490923 | 0.348905 | 0.290511 | 0.440729 | 0.546316 | 0.267153 | 0.254015 | … | 0.268333 | 0.341366 | 0.43541 | 0.420322 | 0.384613 | 0.399143 | 0.530058 | 0.233365 | 0.250259 | 0.323505 | 0.451219 | 0.38994 | 0.498619 | 0.548607 | 0.510192 | 0.321739 | 0.28199 | 0.305958 | 0.389226 | 0.249275 | 0.275452 | 0.263639 | 0.385433 | 0.344928 | 0.382625 | 0.336568 | 0.452784 | 0.343478 | 0.288422 | 0.271218 | 0.394539 | 0.273913 | 0.331926 | 0.468518 | 0.468964 | 0.949275 | 0.985507 |
Train a model on the training data¶
In [4]:
Copied!
xgb_regressor = XGBRegressor()
feature_names = [col for col in training_data.columns if col.startswith("feature")]
xgb_regressor.fit(
training_data[feature_names],
training_data[["target_10d", "target_30d"]],
)
xgb_regressor = XGBRegressor()
feature_names = [col for col in training_data.columns if col.startswith("feature")]
xgb_regressor.fit(
training_data[feature_names],
training_data[["target_10d", "target_30d"]],
)
Out[4]:
XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, feature_weights=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=None, num_parallel_tree=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
objective | 'reg:squarederror' | |
base_score | None | |
booster | None | |
callbacks | None | |
colsample_bylevel | None | |
colsample_bynode | None | |
colsample_bytree | None | |
device | None | |
early_stopping_rounds | None | |
enable_categorical | False | |
eval_metric | None | |
feature_types | None | |
feature_weights | None | |
gamma | None | |
grow_policy | None | |
importance_type | None | |
interaction_constraints | None | |
learning_rate | None | |
max_bin | None | |
max_cat_threshold | None | |
max_cat_to_onehot | None | |
max_delta_step | None | |
max_depth | None | |
max_leaves | None | |
min_child_weight | None | |
missing | nan | |
monotone_constraints | None | |
multi_strategy | None | |
n_estimators | None | |
n_jobs | None | |
num_parallel_tree | None | |
random_state | None | |
reg_alpha | None | |
reg_lambda | None | |
sampling_method | None | |
scale_pos_weight | None | |
subsample | None | |
tree_method | None | |
validate_parameters | None | |
verbosity | None |
Get CrowdCent's latest inference data¶
In [5]:
Copied!
client.download_inference_data("current", "inference_data.parquet")
inference_data = pl.read_parquet("inference_data.parquet")
inference_data.head()
client.download_inference_data("current", "inference_data.parquet")
inference_data = pl.read_parquet("inference_data.parquet")
inference_data.head()
2025-06-09 16:19:58,205 - INFO - Downloading inference data for challenge 'hyperliquid-ranking' current to inference_data.parquet Downloading inference_data.parquet: 100%|██████████| 129k/129k [00:00<00:00, 56.0MB/s] 2025-06-09 16:19:58,441 - INFO - Successfully downloaded inference data to inference_data.parquet 2025-06-09 16:19:58,442 - INFO - Successfully downloaded inference data after 1 attempt(s) to inference_data.parquet
Out[5]:
shape: (5, 83)
id | eodhd_id | date | feature_16_lag15 | feature_13_lag15 | feature_14_lag15 | feature_15_lag15 | feature_8_lag15 | feature_5_lag15 | feature_6_lag15 | feature_7_lag15 | feature_12_lag15 | feature_9_lag15 | feature_10_lag15 | feature_11_lag15 | feature_4_lag15 | feature_1_lag15 | feature_2_lag15 | feature_3_lag15 | feature_20_lag15 | feature_17_lag15 | feature_18_lag15 | feature_19_lag15 | feature_16_lag10 | feature_13_lag10 | feature_14_lag10 | feature_15_lag10 | feature_8_lag10 | feature_5_lag10 | feature_6_lag10 | feature_7_lag10 | feature_12_lag10 | feature_9_lag10 | feature_10_lag10 | feature_11_lag10 | feature_4_lag10 | feature_1_lag10 | … | feature_15_lag5 | feature_8_lag5 | feature_5_lag5 | feature_6_lag5 | feature_7_lag5 | feature_12_lag5 | feature_9_lag5 | feature_10_lag5 | feature_11_lag5 | feature_4_lag5 | feature_1_lag5 | feature_2_lag5 | feature_3_lag5 | feature_20_lag5 | feature_17_lag5 | feature_18_lag5 | feature_19_lag5 | feature_16_lag0 | feature_13_lag0 | feature_14_lag0 | feature_15_lag0 | feature_8_lag0 | feature_5_lag0 | feature_6_lag0 | feature_7_lag0 | feature_12_lag0 | feature_9_lag0 | feature_10_lag0 | feature_11_lag0 | feature_4_lag0 | feature_1_lag0 | feature_2_lag0 | feature_3_lag0 | feature_20_lag0 | feature_17_lag0 | feature_18_lag0 | feature_19_lag0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
str | str | datetime[μs] | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | … | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 |
"PYTH" | "PYTH-USD.CC" | 2025-06-08 00:00:00 | 0.356213 | 0.313268 | 0.388676 | 0.430942 | 0.366864 | 0.275218 | 0.366181 | 0.421273 | 0.466272 | 0.318431 | 0.404669 | 0.424983 | 0.499408 | 0.345087 | 0.411836 | 0.434626 | 0.405917 | 0.415427 | 0.435123 | 0.465662 | 0.607101 | 0.481657 | 0.423885 | 0.440786 | 0.626036 | 0.49645 | 0.397689 | 0.440551 | 0.521893 | 0.494083 | 0.41707 | 0.421781 | 0.491124 | 0.495266 | … | 0.436416 | 0.385799 | 0.505917 | 0.390568 | 0.420564 | 0.513609 | 0.517751 | 0.418091 | 0.437646 | 0.544379 | 0.517751 | 0.431419 | 0.434151 | 0.433136 | 0.44497 | 0.430199 | 0.463895 | 0.622485 | 0.527811 | 0.504734 | 0.448413 | 0.501775 | 0.443787 | 0.470118 | 0.425605 | 0.571598 | 0.542604 | 0.518343 | 0.454728 | 0.60355 | 0.573964 | 0.534615 | 0.459444 | 0.435503 | 0.43432 | 0.43284 | 0.463965 |
"RSR" | "RSR-USD.CC" | 2025-06-08 00:00:00 | 0.578698 | 0.490064 | 0.451651 | 0.497864 | 0.55503 | 0.473577 | 0.437025 | 0.484949 | 0.486391 | 0.492466 | 0.42143 | 0.46844 | 0.507692 | 0.494879 | 0.432078 | 0.489316 | 0.462722 | 0.458376 | 0.504701 | 0.482021 | 0.357396 | 0.468047 | 0.409976 | 0.470975 | 0.404734 | 0.479882 | 0.418329 | 0.479957 | 0.304142 | 0.395266 | 0.3809 | 0.444279 | 0.330178 | 0.418935 | … | 0.465218 | 0.423669 | 0.414201 | 0.443889 | 0.469804 | 0.427219 | 0.36568 | 0.429073 | 0.447165 | 0.504142 | 0.41716 | 0.456019 | 0.468522 | 0.52071 | 0.532544 | 0.49546 | 0.499041 | 0.547929 | 0.476331 | 0.472189 | 0.457354 | 0.423669 | 0.423669 | 0.451775 | 0.43963 | 0.55503 | 0.491124 | 0.443195 | 0.444556 | 0.439053 | 0.471598 | 0.445266 | 0.449458 | 0.388166 | 0.454438 | 0.478994 | 0.49214 |
"INJ" | "INJ-USD.CC" | 2025-06-08 00:00:00 | 0.605917 | 0.57736 | 0.588146 | 0.576009 | 0.718343 | 0.637651 | 0.606953 | 0.567946 | 0.731361 | 0.573006 | 0.607233 | 0.56306 | 0.725444 | 0.588993 | 0.61576 | 0.585962 | 0.626036 | 0.606879 | 0.565018 | 0.553379 | 0.75503 | 0.680473 | 0.621783 | 0.608503 | 0.622485 | 0.670414 | 0.609864 | 0.577455 | 0.652071 | 0.691716 | 0.603985 | 0.585323 | 0.597633 | 0.661538 | … | 0.564593 | 0.480473 | 0.551479 | 0.594565 | 0.556858 | 0.327811 | 0.489941 | 0.531474 | 0.553963 | 0.418935 | 0.508284 | 0.548639 | 0.561156 | 0.502959 | 0.492899 | 0.549889 | 0.534348 | 0.740828 | 0.517751 | 0.599112 | 0.591233 | 0.759763 | 0.620118 | 0.645266 | 0.601226 | 0.687574 | 0.507692 | 0.599704 | 0.58509 | 0.784615 | 0.601775 | 0.631657 | 0.608329 | 0.569231 | 0.536095 | 0.545266 | 0.539689 |
"ZEN" | "ZEN-USD.CC" | 2025-06-08 00:00:00 | 0.530178 | 0.541846 | 0.524401 | 0.509716 | 0.572781 | 0.522647 | 0.535058 | 0.514253 | 0.55858 | 0.481942 | 0.474025 | 0.474323 | 0.553846 | 0.528716 | 0.516441 | 0.505751 | 0.501775 | 0.492466 | 0.515593 | 0.498992 | 0.523077 | 0.526627 | 0.513002 | 0.484648 | 0.511243 | 0.542012 | 0.519194 | 0.494608 | 0.480473 | 0.519527 | 0.467637 | 0.444861 | 0.51716 | 0.535503 | … | 0.528473 | 0.665089 | 0.588166 | 0.555406 | 0.522402 | 0.816568 | 0.648521 | 0.565231 | 0.498992 | 0.738462 | 0.627811 | 0.578263 | 0.529029 | 0.459172 | 0.490533 | 0.491499 | 0.507538 | 0.35503 | 0.581065 | 0.553846 | 0.528725 | 0.347929 | 0.506509 | 0.52426 | 0.517248 | 0.295858 | 0.556213 | 0.53787 | 0.502992 | 0.378698 | 0.55858 | 0.547041 | 0.532089 | 0.230769 | 0.34497 | 0.428402 | 0.477047 |
"POLYX" | "POLYX-USD.CC" | 2025-06-08 00:00:00 | 0.519527 | 0.548214 | 0.531049 | 0.515521 | 0.511243 | 0.539589 | 0.497433 | 0.498685 | 0.533728 | 0.525194 | 0.504009 | 0.498328 | 0.498225 | 0.524687 | 0.525611 | 0.505625 | 0.495858 | 0.383752 | 0.488007 | 0.487293 | 0.350296 | 0.434911 | 0.510491 | 0.472554 | 0.318343 | 0.414793 | 0.480332 | 0.444326 | 0.331361 | 0.432544 | 0.483235 | 0.442214 | 0.36568 | 0.431953 | … | 0.483102 | 0.547929 | 0.433136 | 0.486362 | 0.476278 | 0.557396 | 0.444379 | 0.484786 | 0.465358 | 0.51716 | 0.44142 | 0.483053 | 0.48566 | 0.481657 | 0.546154 | 0.464953 | 0.504036 | 0.589349 | 0.528994 | 0.481953 | 0.503759 | 0.553846 | 0.550888 | 0.48284 | 0.485418 | 0.628402 | 0.592899 | 0.512722 | 0.496921 | 0.597633 | 0.557396 | 0.494675 | 0.505395 | 0.598817 | 0.540237 | 0.546746 | 0.513075 |
Make predictions on the inference data¶
In [6]:
Copied!
preds = xgb_regressor.predict(inference_data[feature_names])
pred_df = pl.from_numpy(preds, ["pred_10d", "pred_30d"])
preds = xgb_regressor.predict(inference_data[feature_names])
pred_df = pl.from_numpy(preds, ["pred_10d", "pred_30d"])
Submit to the hyperliquid-ranking
challenge on CrowdCent¶
In [7]:
Copied!
pred_df = pred_df.with_columns(inference_data["id"]).select(
["id", "pred_10d", "pred_30d"]
)
with pl.Config(tbl_rows=20):
display(pred_df.sort("pred_30d", descending=True))
pred_df = pred_df.with_columns(inference_data["id"]).select(
["id", "pred_10d", "pred_30d"]
)
with pl.Config(tbl_rows=20):
display(pred_df.sort("pred_30d", descending=True))
shape: (169, 3)
id | pred_10d | pred_30d |
---|---|---|
str | f32 | f32 |
"MERL" | 0.522567 | 0.726309 |
"APT" | 0.636483 | 0.693763 |
"INJ" | 0.719315 | 0.64265 |
"RUNE" | 0.649341 | 0.63357 |
"IP" | 0.602131 | 0.63068 |
"AVAX" | 0.648095 | 0.623901 |
"EIGEN" | 0.638704 | 0.622778 |
"BTC" | 0.636244 | 0.616681 |
"XLM" | 0.612878 | 0.609954 |
"WCT" | 0.500231 | 0.608548 |
… | … | … |
"S" | 0.440289 | 0.377915 |
"VINE" | 0.342149 | 0.371673 |
"GAS" | 0.403669 | 0.364356 |
"TRX" | 0.45483 | 0.363703 |
"BERA" | 0.514951 | 0.350949 |
"MOVE" | 0.437645 | 0.346757 |
"FXS" | 0.482782 | 0.330834 |
"PROMPT" | 0.546159 | 0.290578 |
"OM" | 0.347453 | 0.270264 |
"DOOD" | 0.340263 | 0.246796 |
In [8]:
Copied!
# directly submit a dataframe
for slot in [1, 2]:
client.submit_predictions(df=pred_df, slot=slot)
# directly submit a dataframe
for slot in [1, 2]:
client.submit_predictions(df=pred_df, slot=slot)
2025-06-09 16:19:58,549 - INFO - Wrote DataFrame to temporary file: submission.parquet 2025-06-09 16:19:58,550 - INFO - Submitting predictions from submission.parquet to challenge 'hyperliquid-ranking' (Slot: 1) 2025-06-09 16:19:59,113 - INFO - Successfully submitted predictions to challenge 'hyperliquid-ranking' 2025-06-09 16:19:59,117 - INFO - Wrote DataFrame to temporary file: submission.parquet 2025-06-09 16:19:59,118 - INFO - Submitting predictions from submission.parquet to challenge 'hyperliquid-ranking' (Slot: 2) 2025-06-09 16:19:59,518 - INFO - Successfully submitted predictions to challenge 'hyperliquid-ranking'