Hyperliquid End-to-End
Build a model on CrowdCent's training data and submit¶
In [ ]:
Copied!
!pip install crowdcent-challenge
import crowdcent_challenge as cc
import polars as pl
from xgboost import XGBRegressor
!pip install crowdcent-challenge
import crowdcent_challenge as cc
import polars as pl
from xgboost import XGBRegressor
For this tutorial, you will need:
- CrowdCent account: register for free
- CrowdCent API Key: generate an API key from your user profile
Load API key¶
In [ ]:
Copied!
CROWDCENT_API_KEY = "API_KEY_HERE"
CROWDCENT_API_KEY = "API_KEY_HERE"
Initialize the client¶
In [ ]:
Copied!
client = cc.ChallengeClient(
challenge_slug="hyperliquid-ranking",
api_key=CROWDCENT_API_KEY,
)
client = cc.ChallengeClient(
challenge_slug="hyperliquid-ranking",
api_key=CROWDCENT_API_KEY,
)
2025-07-25 16:47:55,298 - INFO - ChallengeClient initialized for 'hyperliquid-ranking' at URL: https://crowdcent.com/api
Get CrowdCent's training data¶
In [4]:
Copied!
client.download_training_dataset(version="latest", dest_path="training_data.parquet")
training_data = pl.read_parquet("training_data.parquet")
training_data.head()
client.download_training_dataset(version="latest", dest_path="training_data.parquet")
training_data = pl.read_parquet("training_data.parquet")
training_data.head()
2025-07-25 16:47:57,090 - INFO - Downloading training data for challenge 'hyperliquid-ranking' v1.0 to training_data.parquet Downloading training_data.parquet: 100%|██████████| 85.1M/85.1M [00:04<00:00, 18.3MB/s] 2025-07-25 16:48:02,297 - INFO - Successfully downloaded training data to training_data.parquet
Out[4]:
shape: (5, 85)
id | eodhd_id | date | feature_16_lag15 | feature_13_lag15 | feature_14_lag15 | feature_15_lag15 | feature_8_lag15 | feature_5_lag15 | feature_6_lag15 | feature_7_lag15 | feature_12_lag15 | feature_9_lag15 | feature_10_lag15 | feature_11_lag15 | feature_4_lag15 | feature_1_lag15 | feature_2_lag15 | feature_3_lag15 | feature_20_lag15 | feature_17_lag15 | feature_18_lag15 | feature_19_lag15 | feature_16_lag10 | feature_13_lag10 | feature_14_lag10 | feature_15_lag10 | feature_8_lag10 | feature_5_lag10 | feature_6_lag10 | feature_7_lag10 | feature_12_lag10 | feature_9_lag10 | feature_10_lag10 | feature_11_lag10 | feature_4_lag10 | feature_1_lag10 | … | feature_5_lag5 | feature_6_lag5 | feature_7_lag5 | feature_12_lag5 | feature_9_lag5 | feature_10_lag5 | feature_11_lag5 | feature_4_lag5 | feature_1_lag5 | feature_2_lag5 | feature_3_lag5 | feature_20_lag5 | feature_17_lag5 | feature_18_lag5 | feature_19_lag5 | feature_16_lag0 | feature_13_lag0 | feature_14_lag0 | feature_15_lag0 | feature_8_lag0 | feature_5_lag0 | feature_6_lag0 | feature_7_lag0 | feature_12_lag0 | feature_9_lag0 | feature_10_lag0 | feature_11_lag0 | feature_4_lag0 | feature_1_lag0 | feature_2_lag0 | feature_3_lag0 | feature_20_lag0 | feature_17_lag0 | feature_18_lag0 | feature_19_lag0 | target_10d | target_30d |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
str | str | datetime[μs] | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | … | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 |
"BRETT" | "BRETT29743-USD.CC" | 2024-05-06 00:00:00 | 0.55721 | 0.540086 | 0.512754 | 0.508386 | 0.692426 | 0.55288 | 0.549131 | 0.533897 | 0.736748 | 0.617263 | 0.603953 | 0.623957 | 0.450295 | 0.479222 | 0.519303 | 0.528181 | 0.527312 | 0.525878 | 0.497428 | 0.518564 | 0.239416 | 0.398313 | 0.451205 | 0.487323 | 0.118248 | 0.405337 | 0.448927 | 0.492024 | 0.086131 | 0.41144 | 0.485798 | 0.550351 | 0.236496 | 0.343396 | … | 0.177372 | 0.365126 | 0.493638 | 0.351825 | 0.218978 | 0.418121 | 0.546089 | 0.268613 | 0.252555 | 0.365888 | 0.495271 | 0.420438 | 0.551095 | 0.538486 | 0.542948 | 0.233333 | 0.249513 | 0.323913 | 0.447919 | 0.289855 | 0.263176 | 0.334256 | 0.435102 | 0.428986 | 0.390405 | 0.400922 | 0.508626 | 0.272464 | 0.270538 | 0.306967 | 0.431848 | 0.401449 | 0.410944 | 0.507738 | 0.507471 | 0.507246 | 0.985507 |
"BRETT" | "BRETT29743-USD.CC" | 2024-05-07 00:00:00 | 0.456339 | 0.471133 | 0.514562 | 0.508886 | 0.54709 | 0.519471 | 0.515427 | 0.532992 | 0.613331 | 0.547406 | 0.606655 | 0.627392 | 0.563407 | 0.461703 | 0.512452 | 0.548603 | 0.517968 | 0.518984 | 0.491352 | 0.514658 | 0.233577 | 0.344958 | 0.446484 | 0.48631 | 0.116788 | 0.331939 | 0.402621 | 0.492332 | 0.056934 | 0.335133 | 0.450072 | 0.55014 | 0.110949 | 0.337178 | … | 0.175161 | 0.347316 | 0.470913 | 0.351814 | 0.204374 | 0.37589 | 0.527665 | 0.230646 | 0.170798 | 0.31625 | 0.470839 | 0.374209 | 0.602433 | 0.560709 | 0.53946 | 0.272464 | 0.269793 | 0.307375 | 0.428926 | 0.407246 | 0.32039 | 0.326165 | 0.426455 | 0.484058 | 0.417936 | 0.376534 | 0.491264 | 0.365217 | 0.297932 | 0.317555 | 0.420723 | 0.281159 | 0.327684 | 0.500999 | 0.487154 | 0.869565 | 0.985507 |
"BRETT" | "BRETT29743-USD.CC" | 2024-05-08 00:00:00 | 0.566488 | 0.453614 | 0.507711 | 0.529308 | 0.383759 | 0.434102 | 0.471631 | 0.518237 | 0.448497 | 0.491656 | 0.563988 | 0.615796 | 0.37807 | 0.391257 | 0.465007 | 0.524881 | 0.46842 | 0.55421 | 0.480155 | 0.521811 | 0.106569 | 0.336529 | 0.407477 | 0.490267 | 0.287591 | 0.335675 | 0.417691 | 0.514816 | 0.230657 | 0.339577 | 0.45308 | 0.574943 | 0.291971 | 0.33502 | … | 0.262028 | 0.348065 | 0.471507 | 0.332974 | 0.281815 | 0.386736 | 0.525698 | 0.239405 | 0.265688 | 0.328473 | 0.472002 | 0.498498 | 0.616402 | 0.585306 | 0.538537 | 0.365217 | 0.297916 | 0.317222 | 0.417801 | 0.255072 | 0.245769 | 0.290722 | 0.407634 | 0.314493 | 0.323733 | 0.331655 | 0.468477 | 0.171014 | 0.20521 | 0.270115 | 0.396829 | 0.205797 | 0.352147 | 0.476755 | 0.47601 | 0.913043 | 0.985507 |
"BRETT" | "BRETT29743-USD.CC" | 2024-05-09 00:00:00 | 0.382578 | 0.383157 | 0.46101 | 0.505768 | 0.401234 | 0.42504 | 0.441107 | 0.496157 | 0.321855 | 0.413705 | 0.524751 | 0.593716 | 0.40717 | 0.410203 | 0.472939 | 0.505173 | 0.590994 | 0.579914 | 0.497107 | 0.513647 | 0.286131 | 0.334355 | 0.427468 | 0.513196 | 0.268613 | 0.334924 | 0.391343 | 0.490949 | 0.337226 | 0.329541 | 0.440073 | 0.566184 | 0.254015 | 0.330593 | … | 0.261943 | 0.343492 | 0.450375 | 0.403047 | 0.370136 | 0.391921 | 0.52686 | 0.242272 | 0.248143 | 0.329173 | 0.449071 | 0.554988 | 0.581873 | 0.580894 | 0.524828 | 0.171014 | 0.205194 | 0.269774 | 0.393907 | 0.268116 | 0.261695 | 0.298309 | 0.387545 | 0.276812 | 0.339929 | 0.334735 | 0.464148 | 0.321739 | 0.282006 | 0.306299 | 0.392148 | 0.265217 | 0.410103 | 0.50499 | 0.468336 | 0.934783 | 0.992754 |
"BRETT" | "BRETT29743-USD.CC" | 2024-05-10 00:00:00 | 0.407299 | 0.398432 | 0.467491 | 0.485709 | 0.268613 | 0.414399 | 0.446095 | 0.489301 | 0.232117 | 0.413673 | 0.488628 | 0.5732 | 0.240876 | 0.396751 | 0.456653 | 0.506786 | 0.60292 | 0.598595 | 0.535617 | 0.530595 | 0.252555 | 0.329927 | 0.390503 | 0.489134 | 0.235036 | 0.251825 | 0.366699 | 0.490923 | 0.348905 | 0.290511 | 0.440729 | 0.546316 | 0.267153 | 0.254015 | … | 0.268333 | 0.341366 | 0.43541 | 0.420322 | 0.384613 | 0.399143 | 0.530058 | 0.233365 | 0.250259 | 0.323505 | 0.451219 | 0.38994 | 0.498619 | 0.548607 | 0.510192 | 0.321739 | 0.28199 | 0.305958 | 0.389226 | 0.249275 | 0.275452 | 0.263639 | 0.385433 | 0.344928 | 0.382625 | 0.336568 | 0.452784 | 0.343478 | 0.288422 | 0.271218 | 0.394539 | 0.273913 | 0.331926 | 0.468518 | 0.468964 | 0.949275 | 0.985507 |
Train a model on the training data¶
In [5]:
Copied!
xgb_regressor = XGBRegressor(n_estimators=2000)
feature_names = [col for col in training_data.columns if col.startswith("feature")]
xgb_regressor.fit(
training_data[feature_names],
training_data[["target_10d", "target_30d"]],
)
xgb_regressor = XGBRegressor(n_estimators=2000)
feature_names = [col for col in training_data.columns if col.startswith("feature")]
xgb_regressor.fit(
training_data[feature_names],
training_data[["target_10d", "target_30d"]],
)
Out[5]:
XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, feature_weights=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=2000, n_jobs=None, num_parallel_tree=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Parameters
objective | 'reg:squarederror' | |
base_score | None | |
booster | None | |
callbacks | None | |
colsample_bylevel | None | |
colsample_bynode | None | |
colsample_bytree | None | |
device | None | |
early_stopping_rounds | None | |
enable_categorical | False | |
eval_metric | None | |
feature_types | None | |
feature_weights | None | |
gamma | None | |
grow_policy | None | |
importance_type | None | |
interaction_constraints | None | |
learning_rate | None | |
max_bin | None | |
max_cat_threshold | None | |
max_cat_to_onehot | None | |
max_delta_step | None | |
max_depth | None | |
max_leaves | None | |
min_child_weight | None | |
missing | nan | |
monotone_constraints | None | |
multi_strategy | None | |
n_estimators | 2000 | |
n_jobs | None | |
num_parallel_tree | None | |
random_state | None | |
reg_alpha | None | |
reg_lambda | None | |
sampling_method | None | |
scale_pos_weight | None | |
subsample | None | |
tree_method | None | |
validate_parameters | None | |
verbosity | None |
Get CrowdCent's latest inference data¶
In [6]:
Copied!
client.download_inference_data("current", "inference_data.parquet")
inference_data = pl.read_parquet("inference_data.parquet")
inference_data.head()
client.download_inference_data("current", "inference_data.parquet")
inference_data = pl.read_parquet("inference_data.parquet")
inference_data.head()
2025-07-25 16:48:34,787 - INFO - Downloading inference data for challenge 'hyperliquid-ranking' current to inference_data.parquet Downloading inference_data.parquet: 100%|██████████| 125k/125k [00:00<00:00, 3.39MB/s] 2025-07-25 16:48:35,220 - INFO - Successfully downloaded inference data to inference_data.parquet 2025-07-25 16:48:35,221 - INFO - Successfully downloaded inference data after 1 attempt(s) to inference_data.parquet
Out[6]:
shape: (5, 83)
id | eodhd_id | date | feature_16_lag15 | feature_13_lag15 | feature_14_lag15 | feature_15_lag15 | feature_8_lag15 | feature_5_lag15 | feature_6_lag15 | feature_7_lag15 | feature_12_lag15 | feature_9_lag15 | feature_10_lag15 | feature_11_lag15 | feature_4_lag15 | feature_1_lag15 | feature_2_lag15 | feature_3_lag15 | feature_20_lag15 | feature_17_lag15 | feature_18_lag15 | feature_19_lag15 | feature_16_lag10 | feature_13_lag10 | feature_14_lag10 | feature_15_lag10 | feature_8_lag10 | feature_5_lag10 | feature_6_lag10 | feature_7_lag10 | feature_12_lag10 | feature_9_lag10 | feature_10_lag10 | feature_11_lag10 | feature_4_lag10 | feature_1_lag10 | … | feature_15_lag5 | feature_8_lag5 | feature_5_lag5 | feature_6_lag5 | feature_7_lag5 | feature_12_lag5 | feature_9_lag5 | feature_10_lag5 | feature_11_lag5 | feature_4_lag5 | feature_1_lag5 | feature_2_lag5 | feature_3_lag5 | feature_20_lag5 | feature_17_lag5 | feature_18_lag5 | feature_19_lag5 | feature_16_lag0 | feature_13_lag0 | feature_14_lag0 | feature_15_lag0 | feature_8_lag0 | feature_5_lag0 | feature_6_lag0 | feature_7_lag0 | feature_12_lag0 | feature_9_lag0 | feature_10_lag0 | feature_11_lag0 | feature_4_lag0 | feature_1_lag0 | feature_2_lag0 | feature_3_lag0 | feature_20_lag0 | feature_17_lag0 | feature_18_lag0 | feature_19_lag0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
str | str | datetime[μs] | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | … | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 |
"ENS" | "ENS-USD.CC" | 2025-07-24 00:00:00 | 0.563743 | 0.553216 | 0.510526 | 0.529579 | 0.588304 | 0.551462 | 0.50731 | 0.542609 | 0.51345 | 0.494152 | 0.461111 | 0.492697 | 0.590643 | 0.577193 | 0.516082 | 0.527347 | 0.595322 | 0.545029 | 0.521053 | 0.499538 | 0.569591 | 0.566667 | 0.544737 | 0.539454 | 0.552047 | 0.570175 | 0.542398 | 0.532056 | 0.6 | 0.556725 | 0.511404 | 0.501226 | 0.603509 | 0.597076 | … | 0.575047 | 0.818713 | 0.68538 | 0.618421 | 0.572337 | 0.721637 | 0.660819 | 0.577485 | 0.545107 | 0.752047 | 0.677778 | 0.627485 | 0.579438 | 0.549708 | 0.551462 | 0.548246 | 0.514757 | 0.54152 | 0.667251 | 0.616959 | 0.572807 | 0.585965 | 0.702339 | 0.636257 | 0.575731 | 0.464327 | 0.592982 | 0.574854 | 0.524708 | 0.603509 | 0.677778 | 0.637427 | 0.579094 | 0.518129 | 0.533918 | 0.554094 | 0.517544 |
"DOOD" | "DOOD-USD.CC" | 2025-07-24 00:00:00 | 0.567251 | 0.6 | 0.47076 | 0.482089 | 0.291228 | 0.356725 | 0.384795 | 0.423368 | 0.693567 | 0.676023 | 0.523392 | 0.56311 | 0.418713 | 0.517544 | 0.456433 | 0.479155 | 0.293567 | 0.433333 | 0.487135 | 0.503057 | 0.419883 | 0.493567 | 0.540351 | 0.456486 | 0.562573 | 0.426901 | 0.458772 | 0.429866 | 0.550877 | 0.622222 | 0.630702 | 0.529764 | 0.409357 | 0.414035 | … | 0.43514 | 0.410526 | 0.48655 | 0.421637 | 0.444858 | 0.568421 | 0.559649 | 0.617836 | 0.541846 | 0.396491 | 0.402924 | 0.460234 | 0.451797 | 0.424561 | 0.484795 | 0.459064 | 0.496462 | 0.819883 | 0.525146 | 0.509357 | 0.501754 | 0.422222 | 0.416374 | 0.421637 | 0.450585 | 0.749708 | 0.659064 | 0.640643 | 0.59152 | 0.797661 | 0.597076 | 0.505556 | 0.50614 | 0.518129 | 0.471345 | 0.445322 | 0.50614 |
"ETH" | "ETH-USD.CC" | 2025-07-24 00:00:00 | 0.698246 | 0.647953 | 0.586257 | 0.58237 | 0.678363 | 0.649123 | 0.580702 | 0.601509 | 0.651462 | 0.628655 | 0.550292 | 0.557504 | 0.653801 | 0.684795 | 0.578947 | 0.57374 | 0.561404 | 0.571345 | 0.538596 | 0.541827 | 0.505263 | 0.601754 | 0.583041 | 0.584499 | 0.437427 | 0.557895 | 0.566667 | 0.581041 | 0.480702 | 0.566082 | 0.560234 | 0.551857 | 0.54386 | 0.59883 | … | 0.615683 | 0.8 | 0.618713 | 0.633918 | 0.610746 | 0.791813 | 0.636257 | 0.632456 | 0.596275 | 0.706433 | 0.625146 | 0.654971 | 0.61135 | 0.57193 | 0.522222 | 0.546784 | 0.523853 | 0.536842 | 0.663158 | 0.632456 | 0.596199 | 0.587135 | 0.693567 | 0.625731 | 0.597368 | 0.561404 | 0.676608 | 0.621345 | 0.579386 | 0.654971 | 0.680702 | 0.639766 | 0.606433 | 0.519298 | 0.545614 | 0.531287 | 0.527485 |
"TAO" | "TAO22974-USD.CC" | 2025-07-24 00:00:00 | 0.392982 | 0.448538 | 0.438304 | 0.485539 | 0.547368 | 0.487135 | 0.462573 | 0.4896 | 0.384795 | 0.439181 | 0.444737 | 0.499779 | 0.417544 | 0.475439 | 0.472222 | 0.489614 | 0.561404 | 0.511111 | 0.523392 | 0.499633 | 0.624561 | 0.508772 | 0.479532 | 0.517433 | 0.680702 | 0.614035 | 0.512281 | 0.525129 | 0.663158 | 0.523977 | 0.490936 | 0.525174 | 0.635088 | 0.526316 | … | 0.500015 | 0.404678 | 0.54269 | 0.514912 | 0.492479 | 0.554386 | 0.608772 | 0.523977 | 0.514325 | 0.359064 | 0.497076 | 0.486257 | 0.485795 | 0.467836 | 0.496491 | 0.503801 | 0.495814 | 0.545029 | 0.516959 | 0.512865 | 0.497515 | 0.625731 | 0.515205 | 0.56462 | 0.516374 | 0.500585 | 0.527485 | 0.525731 | 0.51462 | 0.574269 | 0.466667 | 0.496491 | 0.5 | 0.48655 | 0.477193 | 0.510234 | 0.508626 |
"PNUT" | "PNUT-USD.CC" | 2025-07-24 00:00:00 | 0.34386 | 0.479532 | 0.487135 | 0.49155 | 0.37193 | 0.483041 | 0.459357 | 0.468705 | 0.533333 | 0.578363 | 0.553509 | 0.5457 | 0.346199 | 0.415205 | 0.467836 | 0.496082 | 0.563743 | 0.552047 | 0.515205 | 0.491196 | 0.535673 | 0.439766 | 0.49152 | 0.492038 | 0.569591 | 0.47076 | 0.488596 | 0.479315 | 0.589474 | 0.561404 | 0.573977 | 0.561296 | 0.509942 | 0.42807 | … | 0.484984 | 0.31462 | 0.442105 | 0.462573 | 0.452025 | 0.415205 | 0.502339 | 0.540351 | 0.531432 | 0.484211 | 0.497076 | 0.45614 | 0.475645 | 0.409357 | 0.491228 | 0.521637 | 0.493562 | 0.617544 | 0.505848 | 0.472807 | 0.515936 | 0.529825 | 0.422222 | 0.446491 | 0.479094 | 0.535673 | 0.475439 | 0.518421 | 0.548392 | 0.51462 | 0.499415 | 0.463743 | 0.504678 | 0.397661 | 0.403509 | 0.485965 | 0.488304 |
Make predictions on the inference data¶
In [7]:
Copied!
preds = xgb_regressor.predict(inference_data[feature_names])
pred_df = pl.from_numpy(preds, ["pred_10d", "pred_30d"])
preds = xgb_regressor.predict(inference_data[feature_names])
pred_df = pl.from_numpy(preds, ["pred_10d", "pred_30d"])
Submit to the hyperliquid-ranking
challenge on CrowdCent¶
In [8]:
Copied!
pred_df = pred_df.with_columns(inference_data["id"]).select(
["id", "pred_10d", "pred_30d"]
)
# ensure predictions are between 0 and 1
pred_df = pred_df.with_columns(pl.col(["pred_10d", "pred_30d"]).clip(0, 1))
with pl.Config(tbl_rows=20):
display(pred_df.sort("pred_30d", descending=True))
pred_df = pred_df.with_columns(inference_data["id"]).select(
["id", "pred_10d", "pred_30d"]
)
# ensure predictions are between 0 and 1
pred_df = pred_df.with_columns(pl.col(["pred_10d", "pred_30d"]).clip(0, 1))
with pl.Config(tbl_rows=20):
display(pred_df.sort("pred_30d", descending=True))
shape: (171, 3)
id | pred_10d | pred_30d |
---|---|---|
str | f32 | f32 |
"ENS" | 0.64009 | 0.766982 |
"PEOPLE" | 0.655082 | 0.759009 |
"APE" | 0.553019 | 0.754386 |
"TRUMP" | 0.540669 | 0.751174 |
"FXS" | 0.746214 | 0.745177 |
"LDO" | 0.449098 | 0.717584 |
"LAYER" | 0.513393 | 0.710931 |
"TURBO" | 0.586166 | 0.700337 |
"BERA" | 0.708864 | 0.698633 |
"RENDER" | 0.440773 | 0.692121 |
… | … | … |
"HYPER" | 0.279913 | 0.25558 |
"USUAL" | 0.607879 | 0.239557 |
"TRB" | 0.481452 | 0.223786 |
"FTT" | 0.25645 | 0.202582 |
"LAUNCHCOIN" | 0.640741 | 0.19282 |
"IMX" | 0.322157 | 0.177864 |
"HMSTR" | 0.525798 | 0.175566 |
"kNEIRO" | 0.178402 | 0.085106 |
"INIT" | 0.397368 | 0.06886 |
"JTO" | 0.592458 | 0.0 |
In [ ]:
Copied!
# directly submit a dataframe to slot 1
client.submit_predictions(df=pred_df, slot=1)
# directly submit a dataframe to slot 1
client.submit_predictions(df=pred_df, slot=1)
2025-07-25 16:48:45,241 - INFO - Wrote DataFrame to temporary file: submission.parquet 2025-07-25 16:48:45,242 - INFO - Submitting predictions from submission.parquet to challenge 'hyperliquid-ranking' (Slot: 1) 2025-07-25 16:48:45,839 - INFO - Successfully submitted predictions to challenge 'hyperliquid-ranking'
Out[ ]:
{'match_info': {'matched_ids': 171, 'unmatched_ids': 0, 'message': '171 IDs matched inference data'}, 'id': 814, 'username': 'jrai', 'challenge_slug': 'hyperliquid-ranking', 'inference_data_release_date': '2025-07-25T14:00:29.177700Z', 'submitted_at': '2025-07-25T16:48:45.671926Z', 'status': 'pending', 'slot': 1, 'score_details': None, 'percentile_details': None, 'prediction_file': 'https://cc-challenge-storage.s3.amazonaws.com/challenges/hyperliquid-ranking/submissions/4/57/submission_9QQtZah.parquet?AWSAccessKeyId=AKIATBWNDLY2W4VNIT4P&Signature=Tlvu7YNhkONh2c52JQLjlQ1%2FQjQ%3D&Expires=1753465725'}